on the decomposable numerical range of operators
Authors
abstract
let $v$ be an $n$-dimensional complex inner product space. suppose $h$ is a subgroup of the symmetric group of degree $m$, and $chi :hrightarrow mathbb{c} $ is an irreducible character (not necessarily linear). denote by $v_{chi}(h)$ the symmetry class of tensors associated with $h$ and $chi$. let $k(t)in (v_{chi}(h))$ be the operator induced by $tin text{end}(v)$. the decomposable numerical range $w_{chi}(t)$ of $t$ is a subset of the classical numerical range $w(k(t))$ of $k(t)$ defined as:$$ w_{chi}(t)={(k(t)x^{ast }, x^{ast}):x^{ast } is a decomposable unit tensor}.$$ in this paper, we study the interplay between the geometric properties of $w_{chi}(t)$ and the algebraic properties of $t$. in fact, we extend some of the results of [c. k. li and a. zaharia, decomposable numerical range on orthonormal decomposable tensors, linear algebra appl. 308 (2000), no, 1-3, 139--152] and [c. k. li and a. zaharia, induced operators on symmetry classes of tensors, trans. amer. math. soc. 354 (2002), no. 2, 807--836], to non-linear irreducible characters.
similar resources
On the decomposable numerical range of operators
Let $V$ be an $n$-dimensional complex inner product space. Suppose $H$ is a subgroup of the symmetric group of degree $m$, and $chi :Hrightarrow mathbb{C} $ is an irreducible character (not necessarily linear). Denote by $V_{chi}(H)$ the symmetry class of tensors associated with $H$ and $chi$. Let $K(T)in (V_{chi}(H))$ be the operator induced by $Tin text{End}(V)$. Th...
full textthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولLinear Operators Preserving the Numerical Range ( Radius ) on Triangular
We characterize those linear operators on triangular or diagonal matrices preserving the numerical range or radius.
full textLinear Operators Preserving the Numerical Range (Radius) on Triangular Matrices
We characterize those linear operators on triangular or diagonal matrices preserving the numerical range or radius.
full textNumerical Range of Lie Product of Operators
Denote by W (A) the numerical range of a bounded linear operator A, and [A, B] = AB −BA the Lie product of two operators A and B. Let H, K be complex Hilbert spaces of dimension ≥ 2 and Φ : B(H) → B(K) be a map whose range contains all operators of rank ≤ 1. It is shown that Φ satisfies that W ([Φ(A), Φ(B)]) = W ([A, B]) for any A, B ∈ B(H) if and only if dim H = dim K, there exist ε ∈ {1,−1}, ...
full textSome results on the block numerical range
The main results of this paper are generalizations of classical results from the numerical range to the block numerical range. A different and simpler proof for the Perron-Frobenius theory on the block numerical range of an irreducible nonnegative matrix is given. In addition, the Wielandt's lemma and the Ky Fan's theorem on the block numerical range are extended.
full textMy Resources
Save resource for easier access later
Journal title:
bulletin of the iranian mathematical societyPublisher: iranian mathematical society (ims)
ISSN 1017-060X
volume 40
issue 2 2014
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023